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Task and Motivation Eval by Transfer Style Accuracy

Xo, X1: Two non-parallel corpora of different “styles”

. (1) Acc (post-transfer accuracy) How often was INSUFFICIENT!
X§Z)3 tth sentence of style ¢ a pretrained classifier convinced of transfer? SUFFIC ’
y;: style vector for style ¢ f .

ZSL): content vec for ¢th sent of style ¢ #e.p © Acc , >Im Sentence (negative -> positive)
x() — E training | (of the entire transferred set)

E: X X 3{')4) Z G:)Y X %) — X Yo —— 20 C:> 53/() original input the host that walked us to the table and left

~\1 (] — .
Want £ = Gy, , E&?,y,) . U1 without a word.
Application Generating textual paraphrases with modified attributes or stylistic 0.8/ ' the food is the best and the food is the .
properties (politeness, formality, etc.), benefiting dialogue, writing assistance, | 0.72 | the owner Fhat went to to the table and
etc.; See Pang (2019) for more applications made a smile .
Lack of parallel corpora => Need unsup learning criteria and unsup evaluation . 0.58 The hO_St that walked through the table and
metrics are quite perfect !

Three goals Correct transfer (by classifier), semantic similarity, fluency
Datasets Yelp (positive vs. negative), Literature (Dickens vs. Modern)

Above table: Trained using Shen et al. (2017)

Improvements to Eval Metrics 4 Learning Criteria

(2) Sim (semantic similarity) Built on Shen et al. (2017); Encoder-decoder network

Def (i) Embed sentences by avg word embeddings (GloVe, 300d) weighted by o E

. yer . . . o _o . . Z

idf; (ii) Sim is the avg of the cos sim over all original/transferred sentence pairs Reconstruction loss Y0 ]— y((; I G 5/13\0 loss o

* Alsotried METEOR (large Spearman’s correlation with Sim)

»  Simplicity => efficient & good for widespread adoption Dy distinguishes b/w x¢ and X,

Adversarial loss D; b/w x1 and Xg
(3) PP (fluency) Xo- E
Def Measured by language model trained on concat of two corpora y 201G~ >
0 _ — L0 ~
*  PPis distinct from fluency, but correlated Cycle consistency Y1- — 201G ~  es
* Punished abnormally small PP below Y1- Yo X L0
(1+2+3) Summarizing Acc, Sim, PP into one single number called GM Uik 2071 G
| | 1 Paraphrase loss Yo 7 0S8,
GM(q) = ([100 - Acc—t1]4-[100 - Sim—to]4 -min{[t3 —PP];, [PP—t4]1})3 Yo U U
- Sampled 300 pairs of transferred sentences and asked annotators To- E
which one is better Language model loss o ’# 207G~ Joss §
- Trainin in GM: t ' 0<—“LM,
g params in GM: t’s are trained by Y1
Lem(t) = max(0, ~GMg(y™) + GMg(y ) + 1) Two sets of discriminators
- t=(63,71,97,-37) in our experiments Dy, Dy (adv. loss) and Dj, D7 (WGAN adv. loss)
Result (a): Metric Relationships Model Losses Viodel Losses
MO |Shen et al. (2017): rec+adv M4 | MO+cyc+para
085 55 - M1 | MO+para M5 | MO+cyc+para+lang
50 M2 | MO+cyc M6 | MO+cyc+2d
0.80- . M3 | MO+lang M7 | MO+cyc+para+lang+2d

Perplexity
S
O

/ Result (c): Sentence-Level Validation of Metrics

Cosine similarity based on GloVe
o
~
w

0.70 - 35
--o- MO: baseline
; T M2 4oy 30 Method of validation Lit.
0651 ~ —< M6: +cyc+2d
¢ —— M7: +cyc+para+lang+2d : :
: , - . - , , , , , , Acc % of machine and human judgments that match o4 84
0.10 0.15 0.20 0.25 0.30 0.725 0.750 0.775 0.800 0.825 0.850 Juds
Error rate (1-Acc) Cosine similarity based on GloVe ) : :
. Spearman’s corr b/w Sim and human ratings of
: : : L : : Sim . . 0.79 | 0.75
Negative correlation b/w Sim and Acc  (Generally) positive correlation b/w PP and Sim semantic preservation
Spearman’s corr b/w negative PP and human
PP . 0.81 | 0.69
ratings of fluency

* Sampled (from different models) 100 examples each dataset to

Models Transfer quality Semantic preservation Fluency validate Acc, 150 examples for Sim and PP
Dataset A B A>B B>A Tie  A>B B>A Tie | Asim A>B B>A Tie | App * Human ratings of Sim and PP: On a scale of 1to 4
MO M2 9.0 6.0 85.1 1.5 254 73.1 | -0.05 104 239 65.7| 09
MO M7 96 147 758 25 545 429 | -0.09 46 394 561 | 83
Yelp M6 M7 13.7  11.6 74.7 160 167 674 | 0.01 103 200 69.7 | 14.3 EXO M p ‘ eS
M2 M7 5.8 93 849 8.1 25.6 66.3 | -0.04 140 26.7 593 | 74 ==l o
Literature M2 M6 4.2 6.7 89.2 16.7 208 625 | 0.01 408 133 458 | -13.3 Model GM Sentence Style
M6 M7 158 133 70.8 250 92 658 | 0.03 142 20.8 65.0 | 14.2 . ) ) .
Original —  the mozzarella sub 1s absolutely amazing . Positive
] MO 10.0 the front came is not much better . Negative
Above table: Human judgments b/w transferred sentences from model A M7 22.8 the cheese sandwich is absolutely awful . Negative
and model B Original —  they are completely unprofessional and have no experience .  Negative
, R , , , MO 10.0 they are super fresh and well ! Positive
Summary Human judgments in line with automatic measures for semantic M7 22.8 they are very professional and have great service . Positive
preservation and fluency Original — i declined on their offer , but appreciated the gesture ! Positive
MO 10.0 1 asked on their reviews , they are the same time ! Negative
M7 22.8 i paid for the refund , and explained the frustration ! Negative
Original —  1conjure you, tell me what 1s the matter . Dickens
Textual transfer evaluation + model code: yzpang.me MO 8.81 1’msorry,i’msurei’m goingtobe,butiwasalittleman. Modern
M2 12.8 1’mtelling you, tell me what ’s the time . Modern
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