X₀, X₁: Two non-parallel corpora of different “styles”
x⁽i⁾: iᵗʰ sentence of style t
y⁽i⁾: style vector for style t
\(E: X \times Y \to Z \quad G: Y \times Z \to X \)
\(\mathbf{x} = (G(y⁽i⁾, x⁽i⁾), E(x⁽i⁾, y⁽i⁾)).

Application Generating textual paraphrases with modified attributes or stylistic properties (politeness, formality, etc.), benefiting dialogue, writing assistance, etc.; See Pang (2015) for more applications.

Lack of parallel corpora ⇒ Need unsup learning criteria and unsup evaluation metrics

Three goals
- Correct transfer (by classifier), semantic similarity, fluency
- Datasets Yelp (positive vs. negative), Literature (Dickens vs. Modern)

Improvements to Eval Metrics

3 (Sim) Semantic similarity

Def (i) Embed sentences by avg word embeddings (GloVe, 300d) weighted by idf; (ii) Sim is the avg of the cos sim over all original/ transferred sentence pairs

- Also tried METEOR (large Spearman’s correlation with Sim)
- Simplicity ⇒ efficient & good for widespread adoption

4 PP (fluency)

Def Measured by language model trained on concat of two corpora

- PP is distinct from fluency, but correlated
- Punished abnormally small PP below

5 Summarizing Acc, Sim, PP into one single number called GM

\(GM(y) = (\frac{100}{\text{Acc} \cdot \text{Sim} \cdot \text{PP) min} \{0.01, 0.01, 0.01\}}, \frac{\text{Sim}}{0.01}, \frac{\text{PP}}{0.01}, \frac{\text{Acc}}{0.01}) \)

- Sampled 300 pairs of transferred sentences and asked annotators which one is better
- Training params in GM: t’s are trained by

\(L_{GM}(t) = \text{max}(0, -GM(y) + GM(y)’ - 1) \)

- t = (63, 71, 97, -37) in our experiments

6 Result (a): Metric Relationships

7 Result (b): System-Level Validation

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Models</th>
<th>Transfer quality</th>
<th>Semantic preservation</th>
<th>Fluency</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>M0 : M2</td>
<td>9.0 > 6.0 > 85.1</td>
<td>1.5 > 23.4 > 73.1</td>
<td>0.15 > 10.4 > 23.9</td>
</tr>
<tr>
<td>Yelp</td>
<td>M0 : M7</td>
<td>9.6 > 14.7 > 75.8</td>
<td>2.5 > 54.5 > 42.9</td>
<td>0.09 > 4.9 > 39.4</td>
</tr>
<tr>
<td></td>
<td>M0 : M6</td>
<td>11.7 > 11.4 > 74.7</td>
<td>16.0 > 16.7 > 65.4</td>
<td>0.01 > 10.3 > 20.0</td>
</tr>
<tr>
<td></td>
<td>M2 : M7</td>
<td>5.8 > 9.3 > 84.8</td>
<td>8.1 > 25.6 > 66.3</td>
<td>0.04 > 14.0 > 26.7</td>
</tr>
<tr>
<td>Literature</td>
<td>M0 : M2</td>
<td>4.2 > 6.7 > 89.2</td>
<td>16.7 > 20.8 > 62.5</td>
<td>0.01 > 40.8 > 13.3</td>
</tr>
<tr>
<td></td>
<td>M0 : M6</td>
<td>15.8 > 13.3 > 70.8</td>
<td>25.0 > 9.2 > 65.8</td>
<td>0.03 > 14.2 > 20.8</td>
</tr>
</tbody>
</table>

Above table: Human judgments b/w transferred sentences from model A and model B

Summary Human judgments in line with automatic measures for semantic preservation and fluency

Textual transfer evaluation + model code: yzpang.me