
Discussion of GOLD

Abstract

GOLD does not maximize the expected reward. It maximizes the expected reward
of training examples only. Acknowledgement: This piece originates entirely from
discussion with Kyunghyun Cho. Written in June 2022.

1 Introduction

Pang & He (2021) propose GOLD (generation by off-policy and offline learning from demonstrations),
which improves the performance of a few supervised conditional text generation tasks including
question answering, extractive and abstractive summarization, and machine translation.

A few recent exciting applications of GOLD include DeepMind’s AlphaCode (Li et al., 2022) where
GOLD serves as a crucial algorithm to fine-tune the code generator on the supervised CodeContests
dataset, as well as Dou et al. (2022) where the vision-language pretraining approach achieves
state-of-the-art image captioning results with help from GOLD.

In on-policy policy gradient algorithms in text generation, during training, a sequence is sampled
from the current policy (i.e., text generator) and the reward is computed on this sampled sequence.
GOLD, on the contrary, is an off-policy and offline policy gradient algorithm, and we do not sample
from the current policy during training. Instead, we sample from another policy: the behavioral policy
in the case of GOLD – the behavioral policy corresponds to the policy induced by the dataset.

Sampling from the behavioral policy requires us to incorporate the importance weighting term
πθ(τ)/πb(τ) into the policy gradient, where τ is a trajectory of states and actions. Without loss
of generality, assume that the trajectory only has one step. Then, the importance weight becomes
πθ(a | s)/πb(a | s) for some action a and state s. However, we do not know what πb(a | s) is. A
naive workaround is to use the empirical distribution as an approximation to the true behavioral
policy.

To summarize, here is the original story: to optimize J(θ) = Es,a[r(s, a)], we arrive at this off-policy
policy gradient in which we need to approximate πb using an empirical distribution. If we ponder on
this approximation, we would ask: Is this approximation too liberal? Does it end up changing the
original objective J?

It turns out the answer is yes – it changes the original objective a bit. So, instead of calling GOLD’s
gradient an approximation to the gradient of the original objective J , I think it would be more
prudent to revise the original objective J . Rest assured that the policy-gradient-based algorithm and
implementation in the GOLD paper stay exactly the same.

For the details of the algorithm, I refer readers to the original paper Pang & He (2021) or an article
published in the ICLR 2022 blog post track, Kantharaju & Sankar (2022). Below contains an
explanation of what our updated objective is, while the gradient and the implementation remain
unchanged.

Quick background. Given a context x, we want to generate a sequence of tokens y = (y0, . . . , yT ).
The generation process can be viewed as a sequential decision-making process. At time-step t, the
policy πθ takes an action at ∈ V , transits to the next state st+1 = (y0:t,x), and receives a reward
rt. The policy corresponds to the generation model: πθ(at | st) = pθ(at | y0:t−1,x). We can thus



represent a sequence as a trajectory τ = (s0, a0, r0, . . . , sT , aT , rT ). The set of trajectories derived
from the training data is called demonstrations which show the desired behavior of a policy.

2 From Objective to Gradient

Without loss of generality, we assume γ = 1 and the trajectory contains only one step. Here is our
original objective function.

J(θ) = Es∼ps0
,a∼πθ

[r(s, a)]. (1)

Now we compute the gradient of the objective.

∇θJ(θ) = ∇Es∼ps0 ,a∼πθ
[r(s, a)]

= ∇
∑
s

ps0(s)
∑
a

πθ(a | s)r(s, a)

=
∑
s

ps0(s)
∑
a

r(s, a)∇πθ(a | s)

= Es

[∑
a

r(s, a)∇πθ(a | s)

]

= Es

[∑
a

πb(a | s)
πb(a | s)

r(s, a)∇πθ(a | s)

]

= Es

[
Ea∼πb(·|s)

[
r(s, a)

∇πθ(a | s)
πb(a | s)

]]
.

Using the policy gradient “log-derivative trick,” we have the following derivation.
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The GOLD algorithm uses the empirical distribution as the behavioral policy, which appears in the
denominator of the importance weight.

π̃b(a | s) =

{
1

|D(s)|
∑

(s′,a′)∈D(s) 1(a = a′), if D(s) ̸= ∅
0, otherwise

(3)

where D(s) = {(s′, a′) ∈ D | s′ = s} and D is the set of demonstrations.

Given Pang & He (2021)’s assumption that πb(a | s) ∝ C if D(s) ̸= ∅ for some C ∈ R, with the
above approximation, we arrive at the following gradient based on Eq. (2):
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Given that C ∈ R is a constant, it can be ignored from the gradient in implementation.

Does the approximation change the original objective J , though? We now investigate. H is an
objective function – we do not yet know what it looks like but we will derive now. It turns out H and
J are slightly different.
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3 From Approximated Gradient to Objective

Ignoring the constant C, we have the following:
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where π′(a|s) = 1
Z(s) π̃b(a | s)πθ(a | s) and Z(s) =

∑
a π̃b(a | s)πθ(a | s). We call Z(s) the

partition function. Next,

∇H(θ) = Es

[
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,

where πb is defined in Eq. (3).

Finally, we have

H(θ) = Es∼ps0
,a∼πθ

[r(s, a)π̃b(a | s)] . (6)

In other words, we would maximize the expected reward only if the trajectory appears in the training
set.

4 What’s Going On?

Here is the original story. Eq. (1) is our original objective. After approximating the behavioral policy,
we arrive at the gradient defined in Eq. (4).

The approximation, in fact, slightly changes the original objective. We end up optimizing an updated
objective: Eq. (6).

The lesson is that perhaps it would be more prudent to start from Eq. (6), and then achieve the gradient
Eq. (4), which stays unchanged.

Interpretation using coaching. Observe the gradient in Eq. (5), π′ is similar to the coaching oracle
(He et al., 2012) where π∗

coach(a | s) ∝ π∗
uniform(a | s)π(a | s). The uniform oracle π∗

uniform assigns
uniform probabilities only on valid actions that achieve the final goal; in our case, the valid actions
correspond to actions in the training corpus. The coaching oracle makes sure that invalid actions
(in our case, any actions not appearing in the training corpus) are not assigned any probability; at
the same time, the coaching oracle prefers actions that are also preferred by the current policy π.
Therefore, optimizing H(θ) can be seen as maximizing the expected reward under the product policy
π′, which is the product of our current policy and the behavioral policy.
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