Testing the General Deductive Reasoning Capacity of Large Language Models Using OOD Examples

Abulhair Saparov Richard Yuanzhe Pang Vishakh Padmakumar Nitish Josh Seyed Mehran Kazemi Najoung Kim* He He*

Example from PrOntoQA-OOD (Proof-and-ontology-generated QA, OOD): a programmable dataset

Q: Sterpuses are tumpuses. Each sterpus is large. Vumpuses are zumpuses. Zumpuses are not spicy. Each vumpus is not [Input] slow. Each vumpus is a brimpus. Fae is a sterpus. Fae is a vumpus. **Prove:** Fae is not slow.

[Output] A: Fae is a vumpus. Each vumpus is not slow. Fae is not slow.

Out-of-demonstration generalization

("training" refers to 8-shot prompting / in-context learning)

Train on:		Test on unseen deduction rules:				
"Alex is a dog. All dogs are mammals. Alex is a mammal."	→	"Alex is not a mammal. All dogs are mammals. Suppose Alex is a dog. Alex is a mammal. This contradicts with Alex is not a mammal. Alex is not a dog."				
Train on:		Test on deeper proofs :				
"Alex is a dog. All dogs are mammals. Alex is a mammal."	\rightarrow	"Alex is a dog. All dogs are mammals. Alex is a mammal. All mammals are vertebrates. Alex is a vertebrate."				

	Train on: "Alex is a dog. Alex is soft. Alex is a dog and soft."		Test on wider proofs		S:							
			\rightarrow	"Alex is a dog. Alex i and soft and kind."	is so	ft. Alex is	kind. Alex	is a dog				
	Train on: "Alex is a dog. A mammals. Alex is "Fae is a cat. Fae is soft and a cat."	ll dogs are s a mammal." is soft. Fae	\rightarrow	Test on composition "Alex is a dog. All de Alex is a mammal and	nal ogs a d no	oroofs: are mamm t mean."	als. Alex is	a mamm	al. Alex is n	ot mean.		
1	PrOntoQA- more ded	OOD co uction r	ove rule	ers es			ICL ge	enerc supe	alizes c rvised	differer learni	ntly from ng	
Implication elimination	$f(a) \forall x (f(x) \rightarrow q(x))$					(ICL: in-	context lear	rning)				
	g(a)	is a carnivore.				It could	l be wors	e to pro	vide in-co	ontext exa	amples from the	
Conjunction introduction	$\begin{array}{c c} A & B \\ \hline A \wedge B \end{array}$	Alex is a cat. Alex is orange. Alex is a cat and orange.			same distribution as the test example!							
Conjunction elimination	$A \wedge B$	- Alex is a cat a	nd ora	orange. Alex is orange.		1.00 -	ID	Composit GPT-3.5	ional example PaLM LLa	es MA FLAN-T	5	
Disjunction introduction	A A					0.75	τI	II	т	T		
	A v B	- Alex is a cat. A	Alex is	s a cat or orange.		0.25 -	1 I I	I I				
Disjunction elimination (proof by cases) $A \lor B$	$A \lor B A \vdash C B \vdash C$	Alex is a cat or a do cat then Alex is		log. Suppose Alex is a warm-blooded.		0.00 - min rul	in depth: 2 m le types: 2 m	in depth: 2 ale types: 3	min depth: 2 rule types: 4	min depth: 4 rule types: 3		
	С	Suppose Alex warm-blooded	d. Alex	log then Alex is x is warm-blooded.		0.50 -	00	D: Compos	itional examp	les		
Proof by contradiction	$A \vdash B \neg B$ $A \land B$	Alex is cold-bl mammal, Alex Suppose Alex cold-blooded.	looded is not is a m This c	I. If Alex is a cold-blooded. ammal. Alex is not contradicts with Alex		0.25 - 0.00 - 	III		I I		individual deduction rules <u>test examples</u>	
		is cold-blooded. Alex is not a mammal.			-			1		compositional		

7

Chain-of-thought (CoT) can elicit OOD reasoning

CoT can elicit OOD reasoning in LLMs generalizing to

- unseen rules (however, for proof by cases and proof by contradiction: LLMs require need in-demonstration examples)
- compositional proofs and longer proofs (provided they are given in-context examples of suitable depth)

Figure: better generalization to *compositional* proofs when the in-context examples each contain *individual* deduction rules

		•			
	FLAN-T5	LLaMA	GPT-3.5	PaLM	
Model Size	11B	65B	175B*	540B	
Instruction Tuned		*	~	*	
RLHF	*	*	~	*	
Access	Open	Limited	Limited	Limited	

Models experimented

As shown in prior figures, model size does not strongly correlate with reasoning ability.