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- Energy-based models

Inference networks
Structured prediction energy networks



Feed-tforward models vs. energy-based models

* Feed-forward model at inference time * Feed-forward model at training time
* 9 = flx) where f could be any function *  One possibility: min L(/x), ¥y10) W-L..
(e.g., a complicated neural network) / ’s params
* Energy-based model at inference time * Energy-based model at training time

* Goal: train E’s params; more complicated

Y = argmin,. E(x, y’)

* Energy-based models
o Cons: energy functions may be hard to formulate/train
o Cons: inference may require dynamic programming or gradient descent
o Pros: can better capture x-y dependencies; for example, multiple y’s can be compatible with a single x

o Pros: can inject expert knowledge to energy function; can produce parsimonious formulation => better
generalization and better low-resource performance



Two classes of learning methods for energy-
based models

* Contrastive: push down on E(x,, v,); push up on other points E(x; 9’

* Examples: contrastive divergence, metric learning, noise contrastive estimation,
generative adversarial networks, denoising auto-encoder, masked auto-encoder

* Architectural methods: build E(x, ) such that the volume of the low
energy regions is limited or minimized through regularization

* Examples: sparse coding, sparse auto-encoder, variational auto-encoders (VAEs),
etc.

* Today: contrastive methods

based on Yann LeCun’s slides



Energy-based models
- Inference networks

Structured prediction energy networks



Interence networks (IntNets)

 Exact inference
Y = argmingcy ) Fo(x,y)
e Gradient descent for inference

GD(x) = argming v, ) Fo(T,y)

* Inference network for inference
* InfNet (can be a neural network):
A\p . X — Vg
* Inference time: .
Ag(x) ~ argming, ¢y, Fo(x,y)

* The question 1s, how do we train the InfNet?
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credit: Lifu Tu and Kevin Gimpel



Interence networks (IntNets)
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Inference network: fast and accurate

100£ ]
g@ . 100
= 80° S0
5 10 |
5 60" ~Gradient Descent
8 * Inference Network
< 5

40 ' ,
0 100 200 300 400
Time(s)

Experimental Details

CCG Supertagging with 400 labels

Energy function: BLSTM-CRF

Inference network architecture: BLSTM

Gradient descent run for {5,10,50,100} iterations

slide credit: Lifu Tu and Kevin Gir%pel



Energy-based models
Inference networks

- Structured prediction energy networks

P = argminy,l(x, )



Structured prediction energy networks (SPENSs)

* Original SPEN (Belanger and McCallum, 20106)

* Training:
min Z { max (A(y, yz) — E@(w’iv y) =+ E@(wia yz))
S (93D Y<cYVr(x) +

e Inference:

GD(x) = argming cy . () Lo (z,y)



Structured prediction energy networks (SPENSs)

* Original SPEN (Belanger and McCallum, 20106)

* Training:
min E { max (A(y,y,) — FPe(x;,y) + Fo(x;,y;))
) YEYVr(x) +

o Approximate inference version

. Training:

min max g (A(As(x;),y;) — Folxi, As(x;)) + Eolxi, y;))] 1
© P



Joint training ot SPEN and InfNet

* Training:
m(gn max Z (A(As(x;),y;) — Fo(Ti, Ae(x;)) + Fo(xi, y;))],
t (@i, ED | [

cost-augmented InfNet

test-time InfNet

e Infererice:

Ay (iE) Recall that InfNet is designed to approximate as follows
Ay (x) ~ afgminyeyR(m)E@(iL', Y)
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Joint training ot SPEN and InfNet

* Training:
minmax Y [(A(Ae(xi).y;) — Fo (i, As(x:)) + Eo(zi.,)],
* Fine-tuning InfNet parameters: * Cost-augmented inference
U+ P argmin,, (Ee (z,y') — Ay, y))

U = argming Fg(x, Ag(x))

e Inference: * Test-time inference

Ay () argmin,, Ee (,y’)



Joint training of SPEN and (cost-augmented
IntNet and test-time InfNet)

* Training:
m(gn rg%x< §:> ] (A(As (i), y;) — Fo(xi, As(x;)) + Eo(xi, y;))],
i, Y; -

+ A|=FEo(xi, Av(x;i)) + Folxi,y;)],
* [nference:

« An example energy function for sequence labeling

Lo S‘Yytj UTb«’Bt +Zyt Wy,

t=1 53=1




cost-augmented Ao (x,y)
# -
inference network

Ao (x) Ay (x) Ao (X) Ay (x) o i tmE L () y
T T inference network A
i f f feature network { f
\/‘ T 4
X % X
(a) separated networks (b) shared feature networks (c) stacked networks with y as extra input to A

* Training:
min max Z (A(Ag(x;),y,) — Po(x;, As(x;)) + Fo(x;, yz))]—l—

o U
(x;,y;)€D
+ A|=FEeo(xi, Av(x;i)) + Folxi, y;)]

e [nference:
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EXP erlmental Setup other verb det noun pronoun

intj pronoun | prep adj prep verb

ikr smh he asked fir yo last name so he can
add u on fb lololol

1. Part-of-speech (POS) tagging o e o - ———
2. Named entity recognition (NER) labeling pronoun  proper e . el
noun intj = interjection

3. Constituency parsing (skip)

* Only experimented on sequence labeling

tasks. Tu and Gimpel (2018) has some multi- . -
label classification results.

* Note that although these are NLP 4 0 O NEIERERERG ESERER is - O o
experiments, the approach can be applied to Some questioned if Tim Cook s first product
structured prediction tasks in general. 0 o o 0 O O B-ORGANIZATION O

would be a breakaway hit for Apple
B = “begin”
I = “inside”

O = “outside”
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Our hypotheses

1. (InfNet + SPEN) > MLE
2. (Cost-augmented InfNet + test-time InfNet + SPEN) > (InfNet + SPEN)
3. Tag language models help

POS NER NER+

acc (%) |T)| |I|  speed || F1 (%) |T)| |I| speed || F1 (%)
BiLSTM 88.8 | 166K | 166K | - 849 |[239K | 239K | - 89.3
margin-rescaled | 89.4 | 333K | 166K | - 852 |[479K | 239K | - 89.5
perceptron 88.6 | 333K | 166K | - 844 | 479K | 239K | - 89.0
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Our hypotheses

1. (InfNet + SPEN) > MLE

2. (Cost-augmented InfNet + test-time InfNet + SPEN) > (InfNet + SPEN)

3. Tag language models help

POS NER NER+
acc (%) |T)| |I|  speed || F1 (%) |T)| |I| speed || F1 (%)
BiLSTM 88.8 | 166K | 166K | - 849 | 239K | 239K | - 89.3
margin-rescaled | 89.4 | 333K | 166K | - 852 | 479K | 239K | - 89.5
perceptron 88.6 | 333K | 166K | - 844 | 479K | 239K | - 89.0
SPENs with inference networks, compound objective, CE, no zero truncation (this paper):
separated 89.7 | 500K | 166K | 66 85.0 | 719K | 239K | 32 89.8
shared 89.8 | 339K | 166K | 78 85.6 | 485K | 239K | 38 90.1
stacked 89.8 | 335K | 166K | 92 85.6 | 481K | 239K | 46 90.1
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Our hypotheses

1. (InfNet + SPEN) > MLE
2. (Cost-augmented InfNet + test-time InfNet + SPEN) > (InfNet + SPEN)
3. Tag language models help



Joint training of SPEN and (cost-augmented InfNet and test-
time IntNet)

* Training: ménmax Z (A(As(x;),y;) — Fo(x;, Ag(x ))—I_E@(:BZ)yz))]

P,V
' AN|—Fgo(x;, A Fo(x;,y,
* Inference: Ay () tAl-Fel@:, Av(wi)) + Bl uy)l,

« An example energy function for sequence labeling

Le S‘Yyt,g UTbCB t)) ‘|‘Zyt Wy,

t=1 j7=1

Y = (Yo Y1) . T+1 .
y—t:h(w()v'°°7wt—17y07°°'7yt—1) E (y) — _Zlog(yt yt)
=1
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Our hypotheses

1. (InfNet + SPEN) > MLE
2. (Cost-augmented InfNet + test-time InfNet + SPEN) > (InfNet + SPEN)
3. Tag language models help

NER | NER+ | NER++
margin-rescaled 85.2 89.5 90.2
compounq, stacked, CE, 85 6 90.1 90.8
no truncation

+ global energy GE(c) | 86.3 | 90.4 91.0

Table 4: NER test F1 scores with global energy terms.



Conclusions and thoughts

SPENSs are powerful but learning and inference are hard
2. Inference networks can make it easier and more efficient to use SPENSs

Separating inference networks for the two inference problems (cost-augmented and
test-time inference) improves accuracy and leads to complementary functionality

4. Adding global energy terms leads to further improvements

5. Next step: move to generation tasks and model other types of data (not only
sequence labeling)



