

Inference Networks (InfNets) and Structured Prediction Energy Networks (SPENs)

Richard Yuanzhe Pang yzpang.me 09/22/2020

Today's talk: mostly joint works with Lifu Tu, Kevin Gimpel (both currently at TTIC)

→ Energy-based models

Inference networks
Structured prediction energy networks

Feed-forward models vs. energy-based models

- Feed-forward model at inference time
 - y = f(x) where f could be any function (e.g., a complicated neural network)
- Energy-based model at inference time

$$y = \operatorname{argmin}_{y'} E(x, y')$$

- Feed-forward model at training time
 - One possibility: min $L(f(x), y_{gold})$ w.r.t. f 's params
- Energy-based model at training time
 - Goal: train E's params; more complicated

- Energy-based models
 - o Cons: energy functions may be hard to formulate/train
 - o Cons: inference may require dynamic programming or gradient descent
 - O Pros: can better capture x-y dependencies; for example, multiple y's can be compatible with a single x
 - Pros: can inject expert knowledge to energy function; can produce parsimonious formulation => better generalization and better low-resource performance

Two classes of learning methods for energybased models

- Contrastive: push down on $E(\mathbf{x}_i, \mathbf{y}_i)$; push up on other points $E(\mathbf{x}_i, \mathbf{y}')$
 - Examples: contrastive divergence, metric learning, noise contrastive estimation, generative adversarial networks, denoising auto-encoder, masked auto-encoder
- Architectural methods: build E(x, y) such that the volume of the low energy regions is limited or minimized through regularization
 - Examples: sparse coding, sparse auto-encoder, variational auto-encoders (VAEs), etc.
- Today: contrastive methods

Energy-based models

→ Inference networks

Structured prediction energy networks

Inference networks (InfNets)

• Exact inference

$$\hat{\boldsymbol{y}} = \operatorname{argmin}_{\boldsymbol{y} \in \mathcal{Y}(\boldsymbol{x})} E_{\Theta}(\boldsymbol{x}, \boldsymbol{y})$$

Gradient descent for inference

$$GD(\boldsymbol{x}) = \operatorname{argmin}_{\boldsymbol{y} \in \mathcal{Y}_R(\boldsymbol{x})} E_{\Theta}(\boldsymbol{x}, \boldsymbol{y})$$

- Inference network for inference
 - InfNet (can be a neural network):

$$A_{\Psi}: \mathcal{X} \to \mathcal{Y}_R$$

• Inference time:

$$A_{\Psi}(\boldsymbol{x}) \approx \operatorname{argmin}_{\boldsymbol{y} \in \mathcal{Y}_{R}(\boldsymbol{x})} E_{\Theta}(\boldsymbol{x}, \boldsymbol{y})$$

• The question is, how do we train the InfNet?

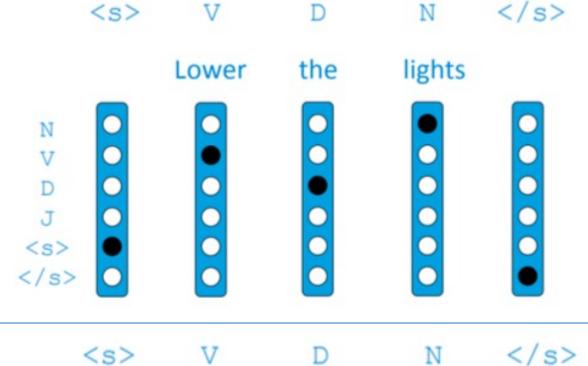
<u>Aside</u>

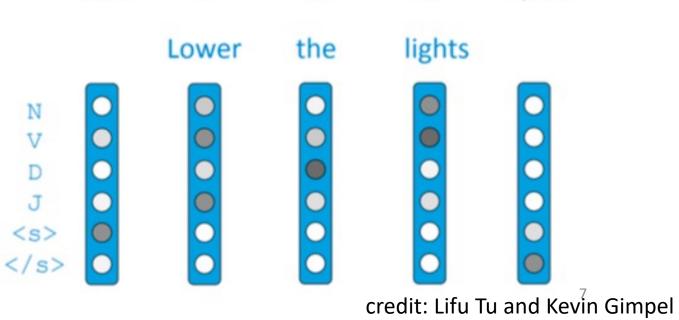
original "hard" space

- use 1 to represent V
- use 2 to represent D, etc.

"relaxed" space

- use a distribution to represent V
- e.g., (0, 1, 0, 0, 0, 0)
- or, (0.1, 0.8, 0.05, 0.05, 0, 0.1))





Inference networks (InfNets)

• Exact inference

$$\hat{\boldsymbol{y}} = \operatorname{argmin}_{\boldsymbol{y} \in \mathcal{Y}(\boldsymbol{x})} E_{\Theta}(\boldsymbol{x}, \boldsymbol{y})$$

Gradient descent for inference

$$GD(\boldsymbol{x}) = \operatorname{argmin}_{\boldsymbol{y} \in \mathcal{Y}_R(\boldsymbol{x})} E_{\Theta}(\boldsymbol{x}, \boldsymbol{y})$$

- Inference network for inference
 - InfNet (can be a neural network):

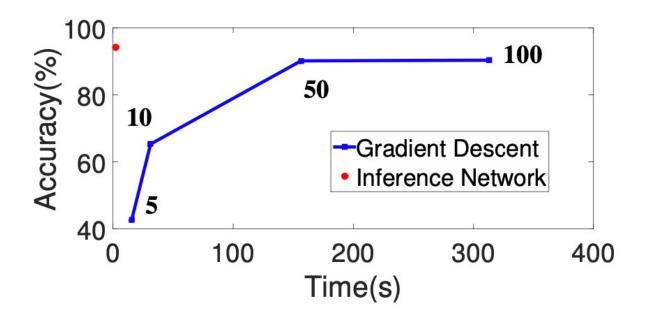
$$A_{\Psi}: \mathcal{X} \to \mathcal{Y}_R$$

• Inference time:

$$A_{\Psi}(\boldsymbol{x}) \approx \operatorname{argmin}_{\boldsymbol{y} \in \mathcal{Y}_{R}(\boldsymbol{x})} E_{\Theta}(\boldsymbol{x}, \boldsymbol{y})$$

• The question is, how do we train the InfNet?

Inference network: fast and accurate



Experimental Details

CCG Supertagging with 400 labels

Energy function: BLSTM-CRF

Inference network architecture: BLSTM

Gradient descent run for $\{5, 10, 50, 100\}$ iterations

Energy-based models Inference networks

→ Structured prediction energy networks

$$P = \operatorname{argmin}_{y'} E(x, y')$$

Structured prediction energy networks (SPENs)

- Original SPEN (Belanger and McCallum, 2016)
 - Training:

$$\min_{\Theta} \sum_{\langle \boldsymbol{x}_i, \boldsymbol{y}_i \rangle \in \mathcal{D}} \left[\max_{\boldsymbol{y} \in \mathcal{Y}_R(\boldsymbol{x})} (\Delta(\boldsymbol{y}, \boldsymbol{y}_i) - E_{\Theta}(\boldsymbol{x}_i, \boldsymbol{y}) + E_{\Theta}(\boldsymbol{x}_i, \boldsymbol{y}_i)) \right]_{+}$$

• Inference:

$$GD(\boldsymbol{x}) = \operatorname{argmin}_{\boldsymbol{y} \in \mathcal{Y}_R(\boldsymbol{x})} E_{\Theta}(\boldsymbol{x}, \boldsymbol{y})$$

Structured prediction energy networks (SPENs)

- Original SPEN (Belanger and McCallum, 2016)
 - Training:

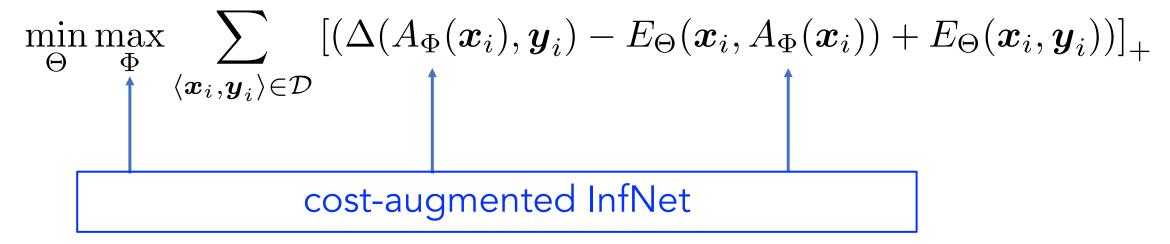
$$\min_{\Theta} \sum_{\langle \boldsymbol{x}_i, \boldsymbol{y}_i \rangle \in \mathcal{D}} \left[\max_{\boldsymbol{y} \in \mathcal{Y}_R(\boldsymbol{x})} (\Delta(\boldsymbol{y}, \boldsymbol{y}_i) - E_{\Theta}(\boldsymbol{x}_i, \boldsymbol{y}) + E_{\Theta}(\boldsymbol{x}_i, \boldsymbol{y}_i)) \right]_{+}$$

- Approximate inference version
 - Training:

$$\min_{\Theta} \max_{\Phi} \sum_{\langle \boldsymbol{x}_i, \boldsymbol{y}_i \rangle \in \mathcal{D}} \left[\left(\Delta(A_{\Phi}(\boldsymbol{x}_i), \boldsymbol{y}_i) - E_{\Theta}(\boldsymbol{x}_i, A_{\Phi}(\boldsymbol{x}_i)) + E_{\Theta}(\boldsymbol{x}_i, \boldsymbol{y}_i) \right) \right]_{+}$$

Joint training of SPEN and InfNet

• Training:



test-time InfNet

• Inference:

Recall that InfNet is designed to approximate as follows

$$A_{\Psi}(\boldsymbol{x}) \approx \operatorname{argmin}_{\boldsymbol{y} \in \mathcal{Y}_{R}(\boldsymbol{x})} E_{\Theta}(\boldsymbol{x}, \boldsymbol{y})$$

Joint training of SPEN and InfNet

• Training:

$$\min_{\Theta} \max_{\Phi} \sum_{\langle \boldsymbol{x}_i, \boldsymbol{y}_i \rangle \in \mathcal{D}} \left[\left(\Delta(A_{\Phi}(\boldsymbol{x}_i), \boldsymbol{y}_i) - E_{\Theta}(\boldsymbol{x}_i, A_{\Phi}(\boldsymbol{x}_i)) + E_{\Theta}(\boldsymbol{x}_i, \boldsymbol{y}_i) \right) \right]_{+}$$

• Fine-tuning InfNet parameters:

$$\hat{\Psi} \leftarrow \hat{\Phi}$$

$$\hat{\Psi} = \operatorname{argmin}_{\Psi} E_{\Theta}(\boldsymbol{x}, A_{\Psi}(\boldsymbol{x}))$$

• Inference:

$$A_{\Psi}(\boldsymbol{x})$$

• Cost-augmented inference $\operatorname{argmin}_{\boldsymbol{y}'}(E_{\Theta}(\boldsymbol{x},\boldsymbol{y}') - \Delta(\boldsymbol{y}',\boldsymbol{y}))$

• Test-time inference $\operatorname{argmin}_{\boldsymbol{y}'} E_{\Theta}(\boldsymbol{x}, \boldsymbol{y}')$

Joint training of SPEN and (cost-augmented InfNet and test-time InfNet)

• Training:

$$\min_{\Theta} \max_{\Phi, \Psi} \sum_{\langle \boldsymbol{x}_i, \boldsymbol{y}_i \rangle \in \mathcal{D}} \left[(\Delta(A_{\Phi}(\boldsymbol{x}_i), \boldsymbol{y}_i) - E_{\Theta}(\boldsymbol{x}_i, A_{\Phi}(\boldsymbol{x}_i)) + E_{\Theta}(\boldsymbol{x}_i, \boldsymbol{y}_i)) \right]_{+}$$

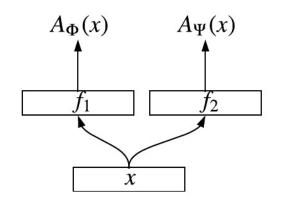
$$+ \lambda \left[-E_{\Theta}(\boldsymbol{x}_i, A_{\Psi}(\boldsymbol{x}_i)) + E_{\Theta}(\boldsymbol{x}_i, \boldsymbol{y}_i) \right]_{+}$$

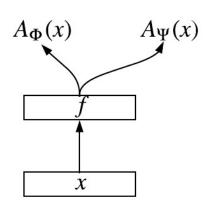
• Inference:

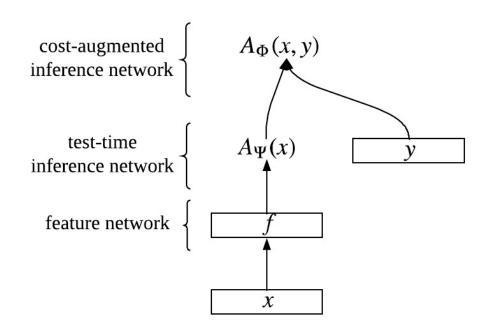
$$A_{\Psi}(\boldsymbol{x})$$

• An example energy function for sequence labeling

$$E_{\Theta}(\boldsymbol{x}, \boldsymbol{y}) = -\left(\sum_{t=1}^{T} \sum_{j=1}^{L} y_{t,j} (U_j^{\top} b(\boldsymbol{x}, t)) + \sum_{t=1}^{T} \boldsymbol{y}_{t-1}^{\top} W \boldsymbol{y}_t\right)$$







(a) separated networks

(b) shared feature networks

(c) stacked networks with y as extra input to A_{Φ}

• Training:

$$\min_{\Theta} \max_{\Phi, \Psi} \sum_{\langle \boldsymbol{x}_i, \boldsymbol{y}_i \rangle \in \mathcal{D}} \left[\left(\Delta(A_{\Phi}(\boldsymbol{x}_i), \boldsymbol{y}_i) - E_{\Theta}(\boldsymbol{x}_i, A_{\Phi}(\boldsymbol{x}_i)) + E_{\Theta}(\boldsymbol{x}_i, \boldsymbol{y}_i) \right) \right]_{+} \\
+ \lambda \left[-E_{\Theta}(\boldsymbol{x}_i, A_{\Psi}(\boldsymbol{x}_i)) + E_{\Theta}(\boldsymbol{x}_i, \boldsymbol{y}_i) \right]_{+}$$

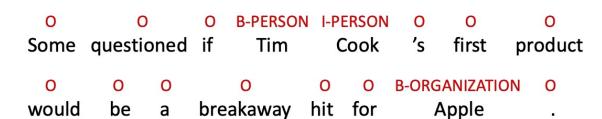
• Inference:

$$A_{\Psi}(\boldsymbol{x})$$

Experimental setup

- 1. Part-of-speech (POS) tagging
- 2. Named entity recognition (NER) labeling
- 3. Constituency parsing (skip)
- Only experimented on **sequence labeling** tasks. Tu and Gimpel (2018) has some multilabel classification results.
- Note that although these are NLP experiments, the approach can be applied to structured prediction tasks in general.

Named Entity Recognition



```
B = "begin"
I = "inside"
O = "outside"
```

- 1. (InfNet + SPEN) > MLE
- 2. (Cost-augmented InfNet + test-time InfNet + SPEN) > (InfNet + SPEN)
- 3. Tag language models help

	POS				NER				NER+
	acc (%)	T	I	speed	F1 (%)	T	I	speed	F1 (%)
BiLSTM	88.8	166K	166K	-	84.9	239K	239K	(-)	89.3

margin-rescaled	89.4	333K	166K	_	85.2	479K	239K	_	89.5
perceptron	88.6	333K	166K	_	84.4	479K	239K	-	89.0

- 1. (InfNet + SPEN) > MLE
- 2. (Cost-augmented InfNet + test-time InfNet + SPEN) > (InfNet + SPEN)
- 3. Tag language models help

	POS				NER				NER+
	acc (%)	T	I	speed	F1 (%)	T	I	speed	F1 (%)
BiLSTM	88.8	166K	166K	-	84.9	239K	239K	(-)	89.3

margin-rescaled	89.4	333K	166K	_	85.2	479K	239K	-	89.5
perceptron	88.6	333K	166K	-	84.4	479K	239K	(-)	89.0

SPENs with inference networks, compound objective, CE, no zero truncation (this paper):

separated	89.7	500K	166K	66	85.0	719K	239K	32	89.8
shared	89.8	339K	166K	78	85.6	485K	239K	38	90.1
stacked	89.8	335K	166K	92	85.6	481K	239K	46	90.1

- 1. (InfNet + SPEN) > MLE
- 2. (Cost-augmented InfNet + test-time InfNet + SPEN) > (InfNet + SPEN)
- 3. Tag language models help

Joint training of SPEN and (cost-augmented InfNet and test-time InfNet)

• Training:
$$\min_{\Theta} \max_{\Phi, \Psi} \sum_{\langle \boldsymbol{x}_i, \boldsymbol{y}_i \rangle \in \mathcal{D}} \left[(\Delta(A_{\Phi}(\boldsymbol{x}_i), \boldsymbol{y}_i) - E_{\Theta}(\boldsymbol{x}_i, A_{\Phi}(\boldsymbol{x}_i)) + E_{\Theta}(\boldsymbol{x}_i, \boldsymbol{y}_i)) \right]_+$$
• Inference: $A_{\Psi}(\boldsymbol{x})$
• Inference: $A_{\Psi}(\boldsymbol{x})$

• An example energy function for sequence labeling

$$E_{\Theta}(\boldsymbol{x}, \boldsymbol{y}) = -\left(\sum_{t=1}^{T} \sum_{j=1}^{L} y_{t,j}(U_j^{\top} b(\boldsymbol{x}, t)) + \sum_{t=1}^{T} \boldsymbol{y}_{t-1}^{\top} W \boldsymbol{y}_t\right)$$

$$\overline{\boldsymbol{y}_t} = h(\boldsymbol{y}_0, \dots, \boldsymbol{y}_{t-1})$$

$$\overline{\boldsymbol{y}_t} = h(\boldsymbol{x}_0, \dots, \boldsymbol{x}_{t-1}, \boldsymbol{y}_0, \dots, \boldsymbol{y}_{t-1})$$
 $E^{\text{TLM}}(\boldsymbol{y}) = -\sum_{t=1}^{T+1} \log(\boldsymbol{y}_t^{\top} \overline{\boldsymbol{y}}_t)$

- 1. (InfNet + SPEN) > MLE
- 2. (Cost-augmented InfNet + test-time InfNet + SPEN) > (InfNet + SPEN)
- 3. Tag language models help

	NER	NER+	NER++
margin-rescaled	85.2	89.5	90.2
compound, stacked, CE, no truncation	85.6	90.1	90.8
+ global energy GE(c)	86.3	90.4	91.0

Table 4: NER test F1 scores with global energy terms.

Conclusions and thoughts

- 1. SPENs are powerful but learning and inference are hard
- 2. Inference networks can make it easier and more efficient to use SPENs
- 3. Separating inference networks for the two inference problems (cost-augmented and test-time inference) improves accuracy and leads to complementary functionality
- 4. Adding global energy terms leads to further improvements
- 5. Next step: move to generation tasks and model other types of data (not only sequence labeling)